

Original Article

Ankle Power Asymmetry Between the Dominant and Non-Dominant Limbs in Healthy Adults

Dr. Prabhu A N¹, Dr. Vaishnavi M², Dr. Pooja S³, Dr. Sanghesh B³, Dr. Dhanya M³¹Associate professor, Department of Orthopedics, Sri Muthukumaran medical college hospital and research institute (SMMCHRI), Chennai²CRMI, Sri Muthukumaran medical college hospital and research institute (SMMCHRI), Chennai³Final year MBBS, Sri Muthukumaran medical college hospital and research institute (SMMCHRI), Chennai**OPEN ACCESS****ABSTRACT****Corresponding Author:****Dr. Prabhu A N**

Associate professor, Department of Orthopedics, Sri Muthukumaran medical college hospital and research institute (SMMCHRI), Chennai

*Received: 06-12-2025**Accepted: 03-01-2026**Available online: 13-01-2026*

Background: Ankle power is a critical component of lower limb biomechanics, influencing movement efficiency, athletic performance, and injury risk. Limb dominance may contribute to asymmetry in ankle power, potentially affecting functional outcomes and injury susceptibility.

Objective: To quantify ankle power asymmetry between dominant and non-dominant limbs in healthy adults.

Methods: A cross-sectional study was conducted among 70 healthy adults aged 18–30 years recruited from an orthopaedic outpatient department. Ankle plantarflexion and dorsiflexion power were measured bilaterally using a portable push–pull dynamometer and recorded in Newtons (N). Dominant and non-dominant limb values were compared using a paired t-test with a significance level of $p < 0.05$.

Results: Mean plantarflexion power was significantly higher in the dominant limb compared to the non-dominant limb (62.69 ± 11.99 N vs 61.56 ± 11.90 N; $t = 3.21$, $p = 0.002$). Dominant limb dorsiflexion power was also significantly greater (48.01 ± 10.29 N vs 47.23 ± 10.08 N; $t = 2.33$, $p = 0.023$).

Conclusion: Healthy adults exhibit a statistically significant ankle power asymmetry favoring the dominant limb for both plantarflexion and dorsiflexion. Quantifying ankle power asymmetry may aid in injury prevention, rehabilitation planning, and performance optimization.

Keywords: Ankle power; Limb dominance; Asymmetry; Dynamometry

Copyright © International Journal of Medical and Pharmaceutical Research

INTRODUCTION

Ankle power plays a pivotal role in lower limb biomechanics by contributing to propulsion, balance, and efficient movement during functional activities such as walking, running, and jumping.¹ Adequate plantarflexion and dorsiflexion power are essential for athletic performance and injury prevention.⁴ Limb dominance often results in asymmetrical loading patterns, particularly in tasks involving unilateral or repetitive movements.^{2,3}

Previous biomechanical studies have demonstrated that the dominant limb typically generates greater propulsive forces, whereas the non-dominant limb contributes more to stabilization and braking.² Zifchock et al. reported consistent interlimb asymmetries in ground reaction forces that influence ankle joint kinetics during gait.³ In high-intensity activities such as sprinting and jumping, athletes exhibit greater power output from the dominant limb.⁵

Although mild asymmetries are considered physiological, excessive imbalances may alter movement mechanics and increase injury risk.⁶ Despite existing research focusing on muscle strength and ground reaction forces, limited studies have directly quantified ankle power asymmetry using portable dynamometry. This study aimed to evaluate ankle power differences between dominant and non-dominant limbs in healthy adults.

Methodology

This cross-sectional study included 70 healthy adults aged 18–30 years attending an orthopaedic outpatient department. Participants were recruited using consecutive sampling over a six-month period.

Inclusion Criteria

- Age 18–30 years
- No history of ankle injury

Exclusion Criteria

- Age <18 or >30 years
- Previous ankle surgery
- Neuromuscular disorders
- Congenital deformities

Data Collection

Ankle plantarflexion and dorsiflexion power were measured bilaterally using a portable push–pull dynamometer, a validated tool for ankle muscle assessment,⁷ and recorded in Newtons (N). Limb dominance was identified based on the participant's preferred limb.

Statistical Analysis

Descriptive statistics were expressed as mean \pm standard deviation (SD). Dominant and non-dominant limb values were compared using a paired t-test. Statistical significance was set at $p < 0.05$.

Results

A total of **70 healthy adults** (mean age: 22.8 ± 1.6 years) participated in the study. Both male and female participants were included, with right-side dominance observed in the majority of subjects.

Ankle plantarflexion and dorsiflexion power values were compared between dominant and non-dominant lower limbs using a paired t-test.

Mean ankle plantarflexion power was significantly higher in the dominant limb (62.69 ± 11.99 N) compared to the non-dominant limb (61.56 ± 11.90 N). This difference was statistically significant ($t = 3.21$, $p = 0.002$).

Similarly, dominant limb dorsiflexion power (48.01 ± 10.29 N) was significantly greater than that of the non-dominant limb (47.23 ± 10.08 N), with a statistically significant difference observed ($t = 2.33$, $p = 0.023$).

Ankle Power Comparison Between Limbs

Movement	Dominant Mean \pm SD (N)	Non-dominant Mean \pm SD (N)	p-value
Plantarflexion	62.69 ± 11.99	61.56 ± 11.90	0.002
Dorsiflexion	48.01 ± 10.29	47.23 ± 10.08	0.023

Both plantarflexion and dorsiflexion power were significantly higher in the dominant limb.

Table 1 : Demographic data

S.NO	NAME	AGE	SEX	DOMINANT SIDE	RIGHT ANKLE PLANTAR FLEXION	LEFT ANKLE PLANTAR FLEXION	DIFF	RIGHT ANKLE DORSI FLEXION	LEFT ANKLE DORSI FLEXION	DIFF
1.	YUVARANI	23	F	R	72	71	1	65	63	2
2.	SRINIDHI	22	F	R	61	64	3	54	55	1
3.	SOWMIYA	22	F	R	64	63	1	49	47	2
4.	SANJANA	23	F	R	51	50	1	44	42	2
5.	BHOOMIKA	24	F	R	52	54	2	44	45	1
6.	KARTHIGA	22	F	R	51	50	1	47	44	3
7.	HARITHA	22	F	R	61	58	3	50	47	3
8.	EBESHYAM	23	F	R	52	52	0	44	43	1
9.	AISHVARYA	23	F	R	64	60	4	52	50	2
10.	SATHISH KUMAR	24	M	R	68	65	3	44	42	2
11.	MRIDULA	21	F	R	64	69	5	52	55	3
12.	ATCHAYA	21	F	L	56	60	4	41	44	3
13.	SHREE GUHAN	23	M	R	59	59	0	43	42	1
14.	ABHAY	22	M	R	69	71	2	56	57	2
15.	HARISH	21	M	L	60	64	4	43	45	2
16.	NIJANTHAN	24	M	R	71	70	1	56	60	4

17	KEERTHIVASAN	22	M	R	76	77	1	64	62	2
18	PRASANNA	23	M	R	80	84	4	43	45	2
19	MONISH KUMAR	22	M	R	84	80	4	52	55	3
20	VIRDAN KUMAR	21	M	R	64	62	2	53	50	3
21	MOUNISH	23	M	R	80	80	0	55	57	2
22	RAHSHIT SHANKAR	22	M	R	77	73	4	45	41	4
23	MOHAMMED IMRAN	22	M	R	59	57	2	37	37	0
24	PRAISY	23	F	R	61	60	1	57	54	3
25	NIVETHAA	22	F	R	60	65	5	44	48	4
26	PRIYADARSHINI	23	F	R	53	49	4	57	55	2
27	PAVITHRA	26	F	R	61	61	0	53	50	3
28	POOVIZHI	22	F	R	50	46	4	53	49	4
29	PRIYA	23	F	R	66	66	0	52	53	1
30	KISHOR	22	M	R	60	56	4	45	47	2
31	PRANESH RAJ	24	M	R	77	79	2	55	55	0
32	MELVIN THOMAS	22	M	R	62	60	2	52	51	1
33	POOJA	22	F	R	66	62	4	45	41	4
34	DHANYA	22	F	R	64	60	4	35	32	3
35	DHEVADHARSHINI	25	F	R	72	68	4	30	34	4
36	ANANYA	22	F	R	77	73	4	37	32	5
37	HARINI	24	F	R	45	42	3	33	37	4
38	SWATHI	21	F	R	40	42	2	34	33	1
39	AKSHAYA	21	F	R	54	50	4	39	35	4
40	SUSHMITHA	22	F	R	73	70	3	38	36	2
41	KAUSHIKA	22	F	R	42	38	3	30	26	4
42	BASHEER	23	F	R	47	42	5	56	52	4
43	JENITHA	21	F	R	56	54	2	66	64	2
44	THARANESAGARI	22	F	R	71	65	5	72	68	3
45	LOGAMITHRA	21	F	R	61	56	4	53	48	5
46	VARINGA	23	F	R	57	53	4	29	24	5
47	ALFA	23	F	R	62	60	2	47	46	1
48	SHRUTHI	23	F	R	55	58	3	24	28	4
49	SOORYAN	23	M	R	68	68	0	62	63	1
50	NIVETHA G	22	F	R	40	37	3	40	42	2
51	DEEPAK S	23	M	R	56	53	3	37	35	2
52	BROWLIN SHINNU	24	F	R	31	34	2	33	30	3
53	SAISRUTHI	21	F	R	42	42	0	35	39	4
54	SHREYA KOUSHIKA	23	F	R	63	61	2	65	60	5
55	SHREYA P	23	F	R	52	56	3	46	50	4
56	SANTHOSHI	22	F	R	59	61	2	39	35	3
57	SAMYUKTHA	22	F	R	56	58	2	45	43	2
58	SHRINIDHI	22	F	R	63	60	3	42	45	3
59	JAYASURYA	23	M	R	83	80	3	39	38	1
60	DHINESH	24	M	R	88	85	3	53	57	4
61	SHUBA	24	F	R	61	65	4	52	50	2
62	ANVAI	23	F	R	65	61	4	60	58	2
63	SANGESH	23	M	R	68	70	2	44	48	4
64	ASMA D	35	F	R	57	52	5	52	50	2
65	YOGESH KANNAN	21	M	R	65	63	2	56	57	1
66	DHARANEESH	23	M	R	66	62	3	53	51	2
67	TAMIZHMARAI	23	M	R	90	87	3	68	65	3
68	HARSHVARTHAN	23	M	R	89	85	4	66	62	4
69	YAMUNA	24	F	R	62	65	3	50	48	2
70	RAJ	23	M	R	77	76	1	55	54	1

Image 1: Push and Pull Dynamometer

Image 2: Measuring Ankle Plantarflexion with Dynamometer

Image 3: Measuring Ankle Dorsiflexion with Dynamometer

DISCUSSION

The present study demonstrates a statistically significant ankle power asymmetry favoring the dominant limb in healthy adults. These findings are consistent with previous studies reporting greater propulsive and power-generating capacity in the dominant limb during gait and athletic tasks.^{2,5} Bishop et al. emphasized that repeated unilateral loading may accentuate interlimb asymmetries, potentially increasing injury risk if unaddressed.⁶

Although the magnitude of asymmetry observed in this study was relatively small, even subtle differences may influence movement efficiency and load distribution over time. The use of a portable push–pull dynamometer provides a practical, clinically applicable approach for assessing ankle power asymmetry in both research and rehabilitation settings.⁷

Limitations

The study was limited to a young, healthy population and did not assess long-term functional outcomes, sport-specific demands, or injury incidence.

Conclusion

Healthy adults exhibit statistically significant asymmetry in ankle plantarflexion and dorsiflexion power, with higher values observed in the dominant limb. Assessment of ankle power asymmetry using portable dynamometry may be valuable for clinical evaluation, injury prevention, and individualized rehabilitation planning.

REFERENCES

1. Farris DJ, Trewartha G, McGuigan MP, Lichtwark GA. Differential strain patterns of the human Achilles tendon determined in vivo with freehand ultrasound elastography. *J Exp Biol.* 2013;216(4):594–600.
2. Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: A review. *Gait Posture.* 2000;12(1):34–45.
3. Zifchock RA, Davis I, Higginson J, McCaw S, Royer T. Side-to-side differences in overground running mechanics. *J Biomech.* 2008;41(12):2620–2626.
4. Hannah R, Folland JP, Smith SL. Explosive neuromuscular performance of males versus females. *Exp Physiol.* 2017;102(5):677–689.
5. Exell TA, Gittoes MJ, Irwin G, Kerwin DG. Biomechanics of bilateral asymmetry in running and jumping. *J Sports Sci.* 2012;30(6):653–661.
6. Bishop C, Read P, Lake J, Chavda S. Interlimb asymmetries: Understanding how to assess and address them. *Strength Cond J.* 2018;40(4):33–44.
7. Cho SY, Myong Y, Park S, et al. A portable articulated dynamometer for ankle dorsiflexion and plantar flexion strength measurement: Design, validation, and user experience study. *Sci Rep.* 2023;13:22221.