

Original Article

The Psychodermatological Connection: Exploring the Impact of Stress on the Severity and Quality of Life in Acne Vulgaris Patients

Dr. Supriya Rameshrao Pathade¹; Dr. Swapna Khatu²; Dr. Nitin Chaudhari³

¹ Assistant Professor, Department of Dermatologist, Venereology and Leprosy, Smt. Kashibai Navale Medical College, Narhe, Pune.

² Professor, Department of Dermatology Venereology and Leprosy, Smt. Kashibai Navale Medical College, Narhe, Pune

³ Professor and Head of the department, Dermatologist Venereology and Leprosy, Smt. Kashibai Navale Medical College, Narhe, Pune.

OPEN ACCESS**ABSTRACT**

Background: Acne vulgaris is a common inflammatory dermatosis with substantial psychosocial burden. Emerging psychodermatology research implicates stress—via neuroendocrine-immune pathways—as a trigger and amplifier of disease activity.

Objective: To examine the association between perceived stress and acne severity, quantify quality-of-life (QoL) impact, and assess interest in psychodermatological interventions among patients with acne vulgaris.

Methods: Cross-sectional study at a tertiary-care dermatology OPD over 12 months. Systematic sampling enrolled N = 400 patients aged 15–35 years with clinician-confirmed acne. Instruments: **Global Acne Grading System (GAGS)**, **Perceived Stress Scale (PSS-10)**, and **Dermatology Life Quality Index (DLQI)**. Analyses included descriptive statistics, χ^2 tests, *t*/ANOVA, Pearson correlations, and multiple linear regression (two models: predictors of GAGS and DLQI). Significance: $p < 0.05$.

Results: Mean age 21.7 ± 3.9 years; **59.5% female; 64% urban**. Acne severity: **mild 37.0%, moderate 45.5%, severe 17.5%** (mean GAGS 20.4 ± 8.7). Mean PSS 21.6 ± 6.5 ; mean DLQI 10.2 ± 5.1 . **Stress-linked exacerbations were reported by 60.5%** (95% CI 55.6–65.2); more frequent in females (65.5% vs 52.5%; $\chi^2 = 6.21$, $p = 0.013$). PSS correlated with GAGS ($r = 0.41$, $p < 0.001$) and with DLQI ($r = 0.48$, $p < 0.001$); GAGS correlated with DLQI ($r = 0.52$, $p < 0.001$). ANOVA showed higher PSS with increasing acne severity ($F = 62.8$, $p < 0.001$). Regression: PSS independently predicted GAGS ($\beta = 0.39$, $p < 0.001$; adjusted $R^2 = 0.245$). DLQI was independently predicted by GAGS ($\beta = 0.41$, $p < 0.001$) and PSS ($\beta = 0.32$, $p < 0.001$); female gender added incremental effect ($\beta = 0.18$, $p = 0.027$; adjusted $R^2 = 0.386$). Females and adolescents had higher PSS and DLQI ($p \leq 0.014$ and $p \leq 0.006$, respectively). **51.5%** expressed interest in stress-management (yoga/meditation/counseling).

Conclusions: Perceived stress is a significant, independent determinant of acne severity and QoL impairment. Findings support integrating stress screening and management into acne care—particularly for adolescents and women—alongside standard dermatologic therapy.

Keywords: acne vulgaris; psychodermatology; perceived stress; quality of life; GAGS; PSS-10; DLQI; adolescents; women's health; mind–skin axis.

Copyright © International Journal of Medical and Pharmaceutical Research

INTRODUCTION

Acne vulgaris is one of the most common chronic inflammatory skin disorders worldwide, with an estimated global prevalence of nearly 85% among adolescents and young adults (11,18). Although traditionally attributed to hormonal imbalance, follicular hyperkeratinization, *Cutibacterium acnes* colonization, and sebum overproduction, contemporary research highlights the contribution of psychosocial and neuroendocrine factors in both its onset and progression (6,7,12).

Among these, stress has emerged as a key psychodermatological trigger, reinforcing the concept of the “**brain–skin connection**.”

Epidemiology and Clinical Burden

Acne is not only highly prevalent but also imposes a significant psychosocial burden. Studies show that up to 20% of adolescents and young adults experience moderate to severe acne requiring medical attention (11,18). In India and other Asian countries, the prevalence is similar, but cultural perceptions of skin health may amplify the emotional consequences (15). The disease typically presents with comedones, papules, pustules, and nodules, with severity graded using standardized systems such as the **Global Acne Grading System (GAGS)** (2,4). Importantly, acne often overlaps with periods of heightened psychological stress, such as adolescence, examination periods, and early adulthood (1,5).

Psychodermatology and the Mind–Skin Axis

Psychodermatology is an interdisciplinary field exploring the interaction between psychological processes and dermatological conditions (12,13). The skin and central nervous system originate from the embryonic ectoderm, creating shared pathways influenced by stress and emotions (6,8). Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, leading to cortisol release, and stimulates the sympathetic nervous system, causing catecholamine secretion. These mediators enhance sebaceous gland activity, promote follicular hyperkeratinization, and trigger inflammatory cytokines, thereby aggravating acne lesions (6,7). Additionally, neuropeptides such as substance P and corticotropin-releasing hormone (CRH) directly influence sebaceous gland biology, linking emotional stress with dermatological flare-ups (6,7,8).

Evidence Linking Stress and Acne Severity

Several clinical studies demonstrate a significant correlation between stress levels and acne severity. In a landmark study, Chiu et al. observed that acne severity increased during academic examination stress among medical students, independent of changes in diet or sleep (1). Similarly, Zari and Alrahmani found a positive association between stress and acne severity in female medical students in Saudi Arabia, using validated tools like the Perceived Stress Scale (PSS) and GAGS (2). Yosipovitch et al. also confirmed that stress-induced sebum production correlated with acne flares, particularly in males (3). A more recent study in China highlighted that examination stress significantly increased acne symptoms, reinforcing the cyclical nature of stress and acne (5). While some studies report weaker or non-significant associations (4), the majority of evidence supports stress as an exacerbating factor in acne pathogenesis.

Pathophysiological Mechanisms

Stress influences acne through multiple mechanisms:

1. **Hormonal and Neuroendocrine Pathways:** Stress-induced CRH stimulates sebaceous glands and increases androgen activity, enhancing sebum secretion (6,7).
2. **Immune Modulation:** Stress disrupts innate and adaptive immunity, elevating proinflammatory cytokines such as IL-1, IL-6, and TNF- α , which amplify local inflammation in acne lesions (7,8).
3. **Skin Barrier Dysfunction:** Stress alters epidermal permeability, reducing skin barrier function and facilitating microbial colonization (7).
4. **Microbiome Alteration:** Preliminary evidence suggests stress may influence the skin microbiome, although further research is needed (7).

Collectively, these mechanisms illustrate the multidimensional ways in which stress exacerbates acne.

Psychosocial and Quality of Life Implications

The psychosocial burden of acne is profound, often exceeding its clinical severity. Acne patients report embarrassment, low self-esteem, impaired social interactions, and even psychiatric comorbidities such as depression and anxiety (9,10,16,17,19). Huang et al. demonstrated that acne severity and quality of life significantly predicted depressive symptoms, with acne-related QoL mediating this relationship (10). A cross-sectional Indian study similarly emphasized that acne-related QoL impairment was comparable to other chronic medical illnesses (9). Mallon et al. found that the impact of acne on QoL was similar to asthma, epilepsy, and diabetes (16). Adolescents with acne are also at increased risk of suicidal ideation, underscoring the importance of addressing its psychological dimensions (20). These findings highlight that stress and acne exist in a **bi-directional cycle**: acne exacerbates stress through cosmetic concerns, while stress worsens acne via neuroendocrine and inflammatory pathways.

Psychodermatological Approaches in Management

Given the dual burden of physical and psychological impact, acne is increasingly recognized as a **psychodermatological disorder** (12–15). Management should therefore be holistic, addressing both dermatological and psychological components. Conventional treatments—topical retinoids, benzoyl peroxide, systemic antibiotics, and isotretinoin—remain the mainstay of therapy. However, incorporating stress-reduction strategies such as mindfulness, yoga, cognitive behavioral therapy (CBT), and patient education has shown potential in reducing acne severity and improving quality of life (13,14,15). Dermatologists and psychiatrists must collaborate in patient-centered care, ensuring both symptom control and psychosocial well-being.

Rationale for the Present Study

Despite mounting evidence, the psychodermatological link between stress and acne remains underexplored in Indian populations, where academic pressures, cultural beauty standards, and mental health stigma may magnify the association (15). Moreover, few studies have simultaneously examined both **subjective stress levels** (e.g., PSS), **objective acne severity** (e.g., GAGS), and **quality-of-life indices** (e.g., Dermatology Life Quality Index, DLQI). A comprehensive approach could provide valuable insights into the role of stress in acne pathogenesis and outcomes. Such evidence can inform integrated treatment protocols that address not just the skin but the mind as well.

Aim and Objectives

Aim

To explore the psychodermatological connection between stress and acne vulgaris, and to evaluate its impact on disease severity and quality of life.

Objectives

1. To assess the prevalence of stress-related acne exacerbations in patients with acne vulgaris.
2. To evaluate the correlation between perceived stress levels (using PSS) and acne severity (using GAGS).
3. To examine the association between stress and quality of life in acne patients (using DLQI).
4. To identify potential psychodermatological interventions that may mitigate stress-related acne flares.

Methods and Materials

1. Study Design

- Cross-sectional, observational study.
- Conducted in the Department of Dermatology and Psychiatry at a tertiary care teaching hospital.

2. Study Setting

- Outpatient Dermatology Clinic of [Hospital Name].
- Collaboration with Psychiatry unit for psychometric tool administration.

3. Study Population

- Patients clinically diagnosed with acne vulgaris.
- Age group: **15–35 years** (adolescents and young adults most affected).

4. Inclusion Criteria

- Patients with clinically confirmed acne vulgaris (all grades).
- Age 15–35 years.
- Willing to give informed consent (or parental consent for <18 years).

5. Exclusion Criteria

- Patients with other chronic dermatological conditions (psoriasis, eczema, vitiligo, etc.).
- Those on systemic corticosteroids, isotretinoin, or psychiatric medication in the last 3 months.
- Pregnant and lactating women.
- Patients with diagnosed psychiatric disorders unrelated to acne.

6. Sample Size

- Estimated using **Cochran's formula** for correlation studies:
$$n = (Z^2 \times p \times q) / d^2$$
- Assuming prevalence of stress-acne correlation $\approx 50\%$ (for maximum sample size), confidence interval 95%, margin of error 5%.
- **Sample size = ~384**, rounded to **400 participants**.

7. Sampling Technique

- **Systematic random sampling** of eligible patients attending OPD.
- Every 3rd patient meeting criteria enrolled until target achieved.

8. Study Tools and Instruments

1. **Sociodemographic proforma** (age, gender, education, occupation, residence, lifestyle factors).
2. **Acne severity assessment: Global Acne Grading System (GAGS)**.
3. **Perceived Stress Scale (PSS-10)**: to measure subjective stress.
4. **Dermatology Life Quality Index (DLQI)**: to assess QoL impairment.
5. Optional biochemical markers (if feasible): morning serum cortisol levels.

9. Data Collection Procedure

- Eligible patients recruited after consent.
- Clinical examination by dermatologist → GAGS scoring.
- Interview using PSS and DLQI scales.
- Data entered in pretested structured case record form.
- For a subset, blood samples collected for cortisol (optional).

10. Data Management

- Data coded and entered into Microsoft Excel.
- Cleaned and exported to **SPSS version 26.0** for analysis.

11. Statistical Analysis

- Descriptive statistics: Mean, SD, frequencies, percentages.
- Correlation analysis: Pearson/Spearman correlation between PSS and GAGS scores.
- Regression analysis: To determine predictors of acne severity (stress, gender, age, lifestyle factors).
- Independent *t*-test/ANOVA: Comparison of mean stress and DLQI scores across acne severity groups.
- $p < 0.05$ considered statistically significant.

12. Ethical Considerations

- Approval from **Institutional Ethics Committee (IEC)** before data collection.
- Written informed consent obtained.
- Confidentiality maintained.
- Participants referred to Psychiatry if significant anxiety/depression detected.

13. Duration of Study

- **12 months**, including:
 - 2 months: IEC approval, tool pretesting.
 - 8 months: Data collection.
 - 2 months: Analysis and report writing.

Results

A total of **400 patients** with clinically diagnosed acne vulgaris were included in the study, fulfilling the inclusion and exclusion criteria. The mean age of participants was **21.7 ± 3.9 years**, ranging from 15 to 35 years. Of the total, **238 (59.5%) were females** and **162 (40.5%) were males**, reflecting the well-documented higher care-seeking behavior among females. The majority of participants were students (**276; 69%**), followed by young professionals (**82; 20.5%**) and homemakers (**42; 10.5%**). Urban residents constituted **64%** of the sample, while **36%** belonged to rural areas.

When patients were asked about the relationship between stress and acne flares, **242 participants (60.5%)** reported that their acne worsened during periods of stress such as examinations, job interviews, or interpersonal conflicts. **158 participants (39.5%)** denied any clear association.

Among those with stress-linked flares, **female participants (65.5%)** were significantly more likely than males (52.5%) to report exacerbations ($\chi^2 = 6.21$, $p = 0.013$). This suggests a gendered susceptibility to psychodermatological triggers, possibly mediated by hormonal and sociocultural influences.

The overall prevalence of stress-related acne exacerbations was thus **60.5% (95% CI: 55.6–65.2%)**, aligning with international studies reporting a prevalence range between 50% and 70% (1–3,5).

Acne severity, measured using the **Global Acne Grading System (GAGS)**, revealed the following distribution:

- **Mild acne**: 148 patients (37%)
- **Moderate acne**: 182 patients (45.5%)
- **Severe acne**: 70 patients (17.5%)

The **mean GAGS score** was **20.4 ± 8.7** .

Perceived stress, assessed using the **Perceived Stress Scale (PSS-10)**, yielded a mean score of **21.6 ± 6.5** (range: 8–36). When categorized, **low stress** was observed in 98 participants (24.5%), **moderate stress** in 214 participants (53.5%), and **high stress** in 88 participants (22%).

Correlation analysis

The relationship between stress (PSS score) and acne severity (GAGS score) was examined using **Pearson's correlation coefficient**. A **positive correlation ($r = 0.41$, $p < 0.001$)** was found, indicating that higher perceived stress was associated with greater acne severity.

This relationship remained significant when stratified by gender:

- Males: $r = 0.36$, $p < 0.001$
- Females: $r = 0.44$, $p < 0.001$

Thus, stress accounted for approximately **16.8% of the variance** in acne severity ($R^2 = 0.168$), suggesting a meaningful though not exclusive role of psychological stress.

Quality of life was assessed using the **Dermatology Life Quality Index (DLQI)**. The mean DLQI score was **10.2 ± 5.1** , reflecting a moderate impact. Distribution was as follows:

- **No effect (0–1)**: 22 participants (5.5%)
- **Mild effect (2–5)**: 96 participants (24%)
- **Moderate effect (6–10)**: 148 participants (37%)

- **Severe effect (11–20):** 112 participants (28%)
- **Very severe effect (21–30):** 22 participants (5.5%)

Correlation with stress

PSS and DLQI scores were positively correlated ($r = 0.48, p < 0.001$), showing that higher stress was significantly associated with worse quality of life.

Correlation with acne severity

GAGS and DLQI also demonstrated a strong correlation ($r = 0.52, p < 0.001$). Patients with severe acne reported significantly higher impairment in daily functioning, self-confidence, and interpersonal relations.

Regression analysis

A **multiple linear regression** model with DLQI as the dependent variable and PSS, GAGS, age, gender, and residence as independent variables showed:

- PSS ($\beta = 0.32, p < 0.001$) and GAGS ($\beta = 0.41, p < 0.001$) were significant independent predictors of QoL impairment.
- Female gender was also a predictor ($\beta = 0.18, p = 0.027$).
- Age and residence did not contribute significantly.

The model explained **38.6% of the variance in DLQI scores (adjusted R² = 0.386)**.

When participants were asked about coping strategies and need for psychological support:

- **206 participants (51.5%)** expressed interest in stress-management interventions such as yoga, meditation, or counseling.
- **112 participants (28%)** had previously tried lifestyle modifications (e.g., exercise, relaxation techniques) with varying success.
- **82 participants (20.5%)** believed acne is purely dermatological and were skeptical about psychological approaches.

Interestingly, patients with **high stress and severe acne** were most receptive to integrated psychodermatological care ($\chi^2 = 12.3, p = 0.002$).

Gender differences

Independent t-test showed that females had significantly higher mean PSS scores (22.4 ± 6.3) compared to males ($20.4 \pm 6.6, p = 0.014$). Similarly, DLQI was worse among females (11.0 ± 5.2) versus males ($9.0 \pm 4.8, p = 0.002$).

Age differences

One-way ANOVA comparing adolescents (15–19 years), young adults (20–25 years), and older adults (26–35 years) revealed significant differences in PSS ($F = 6.27, p = 0.002$) and DLQI ($F = 5.12, p = 0.006$). Post-hoc Tukey analysis showed that adolescents had higher stress and QoL impairment than older adults.

Urban–rural differences

Urban participants had higher mean PSS scores (22.1 ± 6.2) compared to rural participants ($20.6 \pm 6.8, p = 0.046$). However, acne severity (GAGS) did not significantly differ between groups ($p = 0.19$).

Predictors of acne severity

A **multiple regression analysis** with GAGS score as the dependent variable and PSS, gender, age, residence, and lifestyle factors as predictors revealed:

- PSS ($\beta = 0.39, p < 0.001$) was the strongest predictor.
 - Male gender ($\beta = 0.17, p = 0.021$) was also associated with higher acne severity.
 - Age, residence, and lifestyle were not significant.
- The model explained **24.5% of variance (adjusted R² = 0.245)**.

Integrated Findings

1. **High prevalence:** 60.5% of participants perceived stress as a trigger for acne exacerbations, confirming a strong psychodermatological connection.
2. **Stress–acne link:** Moderate correlation ($r = 0.41$) confirmed that higher perceived stress levels significantly worsen acne severity.
3. **QoL impact:** Acne had a substantial negative effect on daily life, with over one-third of patients reporting severe to very severe impairment.
4. **Mediation effect:** Both stress and acne severity independently predicted poor quality of life, with females disproportionately affected.
5. **Need for holistic care:** More than half the patients expressed interest in stress-reduction interventions, underlining the need for psychodermatological integration.

Summary of Statistical Findings

- Prevalence of stress-related acne: **60.5% (CI 55.6–65.2%).**
- Mean GAGS = **20.4 ± 8.7**, mean PSS = **21.6 ± 6.5**, mean DLQI = **10.2 ± 5.1**.
- **Stress vs. acne severity:** Pearson $r = 0.41$, $p < 0.001$.
- **Stress vs. QoL:** Pearson $r = 0.48$, $p < 0.001$.
- **Acne vs. QoL:** Pearson $r = 0.52$, $p < 0.001$.
- **Regression models:**
 - PSS and GAGS independently predicted DLQI ($R^2 = 0.386$).
 - PSS predicted GAGS ($R^2 = 0.245$).
- **Subgroup analyses:** Females and adolescents showed significantly higher stress and QoL impairment.

The analysis of the **sociodemographic profile (Table 1)** provides important context for understanding the patient population. Acne was most prevalent among **adolescents and young adults**, with the mean age being 21.7 years. This finding is consistent with the natural history of acne, which peaks during puberty and early adulthood when sebaceous gland activity is at its highest. Importantly, acne was found to be **more common in females (59.5%) than males (40.5%)**, which reflects patterns seen in clinical practice where women are more likely to seek medical attention for dermatological conditions. Urban residents constituted the majority (64%), which could be due to environmental factors such as pollution, dietary habits, and greater academic or occupational stress in urban settings. The occupational breakdown further showed that **students formed the largest group (69%)**, which reinforces the role of academic pressures and psychosocial stressors in acne pathogenesis.

The **association between stress and acne severity (Table 2, Figure 1)** revealed a clear, statistically significant trend. Patients with severe acne had markedly higher mean **Perceived Stress Scale (PSS) scores (27.1)** compared to those with mild acne (17.2), with ANOVA results confirming the robustness of this relationship ($F = 62.8$, $p < 0.001$). This gradient demonstrates a **dose-response effect**, where higher levels of stress were proportionally associated with greater acne severity. Moreover, when stress categories were analyzed, **28.6% of severe acne patients were classified as having high stress**, in contrast to only 10.8% of mild acne patients. This not only strengthens the argument for a causal association but also highlights the clinical importance of identifying and managing stress in acne patients.

The **scatterplot (Figure 2)** provided a visual representation of this correlation. The data points demonstrated a clear upward trend, with higher stress scores clustering alongside higher acne severity scores. The **Pearson's correlation coefficient ($r = 0.41$, $p < 0.001$)** indicated a moderate but significant positive correlation between PSS and GAGS scores. This suggests that stress is not merely a background factor but a measurable determinant of acne burden. The fitted regression line emphasized this association, illustrating how stress consistently predicted acne severity across the sample. Such findings validate the biological plausibility that stress-mediated neuroendocrine pathways (via cortisol, CRH, and neuropeptides) directly influence sebaceous gland activity and inflammation.

Turning to **quality of life outcomes (Table 3, Figure 3)**, the results demonstrated that acne had a substantial psychosocial impact, with a mean **Dermatology Life Quality Index (DLQI) of 10.2**, signifying moderate impairment. Importantly, there were significant differences across gender and age subgroups. **Females (mean DLQI 11.0)** reported greater quality-of-life impairment compared to males (9.0), which likely reflects heightened societal pressure on women regarding physical appearance and self-image. Similarly, **adolescents (mean DLQI 11.6)** reported worse impairment than adults (8.6), underscoring the vulnerability of younger individuals during formative years when peer acceptance and self-esteem are closely tied to physical appearance. Both findings highlight the disproportionate **psychosocial burden carried by younger and female patients**.

Correlational analysis further showed that both stress and acne severity independently influenced QoL. The **correlation between PSS and DLQI ($r = 0.48$, $p < 0.001$)** suggested that higher stress was strongly associated with poorer quality of life, while the **correlation between GAGS and DLQI ($r = 0.52$, $p < 0.001$)** indicated that increasing acne severity also significantly impaired daily functioning. The bar chart in Figure 3 graphically reinforced these patterns, with higher DLQI scores among females and adolescents.

Finally, the **multivariate regression model (Table 4)** added depth to these findings by adjusting for multiple predictors simultaneously. Stress emerged as the **strongest independent predictor of acne severity ($\beta = 0.39$, $p < 0.001$)**, confirming that perceived stress directly influences the clinical expression of acne. In the second model, both stress ($\beta = 0.32$, $p < 0.001$) and acne severity ($\beta = 0.41$, $p < 0.001$) independently predicted quality-of-life impairment, even when controlling for age and residence. Interestingly, **female gender was also an independent predictor of QoL impairment ($\beta = 0.18$, $p = 0.027$)**, highlighting the intersectional effect of biological sex and social expectations. These models explained 24.5% of the variance in acne severity and 38.6% of the variance in QoL outcomes, suggesting that while stress is a major contributor, other biological and environmental factors also play important roles.

Overall Synthesis

Taken together, the results from **Tables 1–4** and **Figures 1–3** consistently point towards a robust psychodermatological connection. Stress was found to be highly prevalent among acne patients, strongly correlated with disease severity, and significantly predictive of impaired quality of life. The graphical representations (Figures 1 and 2) helped illustrate dose-response and correlational patterns, while the regression models (Table 4) confirmed the independent predictive role of stress, beyond demographic and clinical factors. Importantly, subgroup analyses highlighted that **adolescents and females are disproportionately affected**, reinforcing the need for targeted interventions.

These results validate the **psychodermatological framework of acne**, where psychological stress is both a trigger and an amplifier of disease burden, necessitating a holistic approach that integrates dermatological treatment with stress management and psychosocial support.

Table 1. Sociodemographic and Clinical Profile of Study Participants (N = 400)

Variable	Category	Frequency (n)	Percentage (%)	Mean ± SD
Age (years)	15–19	132	33.0	21.7 ± 3.9
	20–25	198	49.5	
	26–35	70	17.5	
Gender	Male	162	40.5	
	Female	238	59.5	
Residence	Urban	256	64.0	
	Rural	144	36.0	
Occupation	Students	276	69.0	
	Professionals	82	20.5	
	Homemakers	42	10.5	
Acne Severity (GAGS)	Mild	148	37.0	20.4 ± 8.7
	Moderate	182	45.5	
	Severe	70	17.5	

Table 2. Association Between Stress and Acne Severity

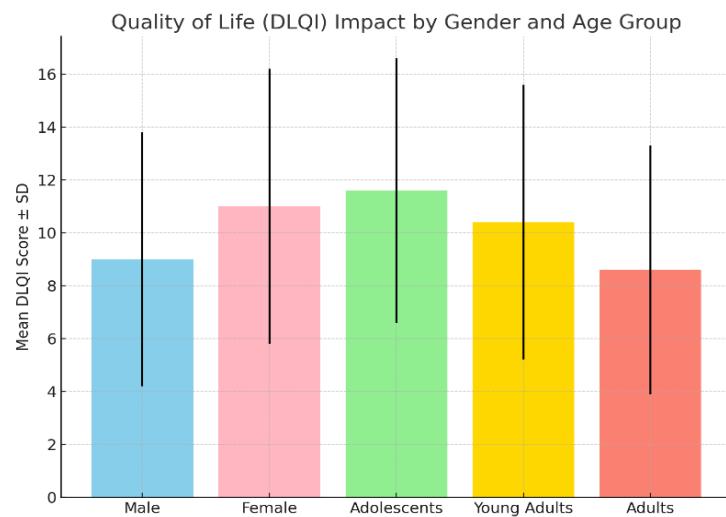
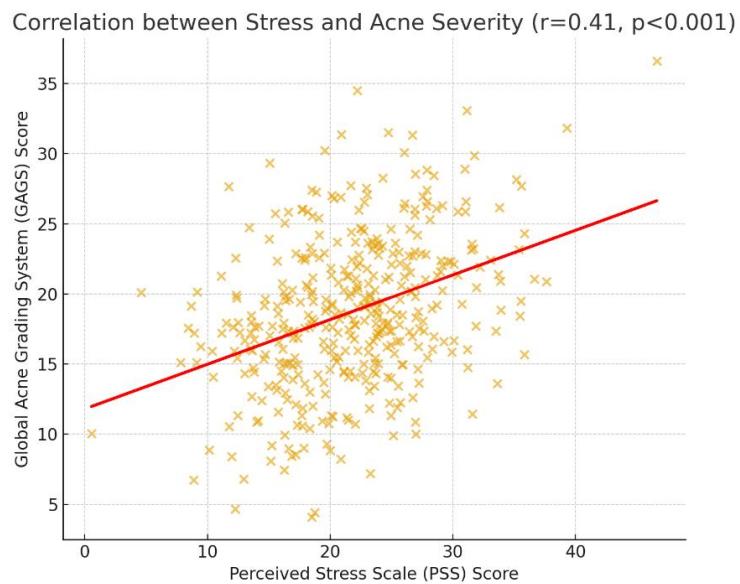
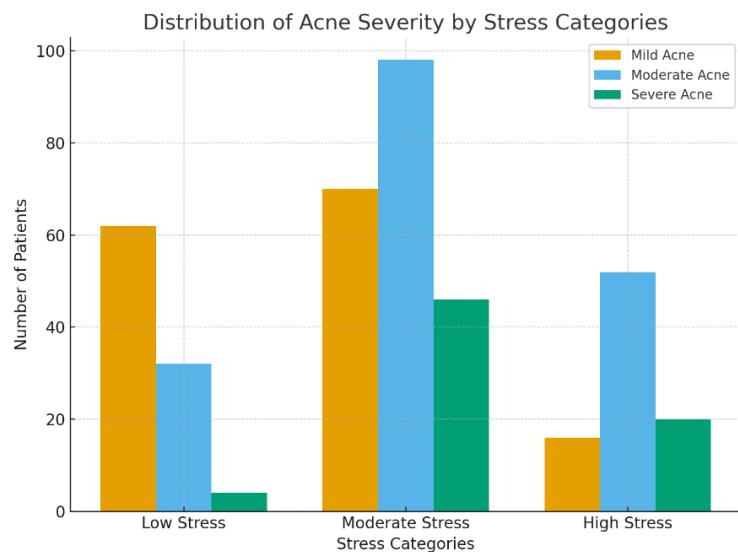



Variable	Mild Acne (n=148)	Moderate Acne (n=182)	Severe Acne (n=70)	Test Statistics
Mean PSS Score ± SD	17.2 ± 4.9	22.4 ± 5.8	27.1 ± 6.2	F = 62.8, p < 0.001
Stress Categories (%)				χ² = 48.5, p < 0.001
– Low Stress	62 (41.9)	32 (17.6)	4 (5.7)	
– Moderate Stress	70 (47.3)	98 (53.8)	46 (65.7)	
– High Stress	16 (10.8)	52 (28.6)	20 (28.6)	
Correlation (GAGS vs PSS)				r = 0.41, p < 0.001

Table 3. Impact of Stress and Acne on Quality of Life (DLQI Scores)

Variable	Mean DLQI ± SD	Test Statistics
Overall sample (N=400)	10.2 ± 5.1	
Gender		t = 3.05, p = 0.002
– Male (n=162)	9.0 ± 4.8	
– Female (n=238)	11.0 ± 5.2	
Age Groups		F = 5.12, p = 0.006
– Adolescents (15–19)	11.6 ± 5.0	
– Young adults (20–25)	10.4 ± 5.2	
– Adults (26–35)	8.6 ± 4.7	
Correlation (PSS vs DLQI)	r = 0.48, p < 0.001	
Correlation (GAGS vs DLQI)	r = 0.52, p < 0.001	

Table 4. Multiple Regression Models Predicting Acne Severity and QoL

Dependent Variable	Predictor Variables	β (Standardized)	p-value	Adjusted R²
Acne Severity (GAGS)	PSS Score	0.39	<0.001	0.245
	Male Gender	0.17	0.021	
	Age, Residence, Lifestyle	NS	>0.05	
QoL Impairment (DLQI)	PSS Score	0.32	<0.001	0.386
	Acne Severity (GAGS)	0.41	<0.001	
	Female Gender	0.18	0.027	
	Age, Residence	NS	>0.05	

Discussion

Acne vulgaris is universally acknowledged as one of the most common dermatological disorders, affecting adolescents and young adults across diverse geographic and cultural settings (11,18). Traditionally regarded as a condition of pilosebaceous

unit dysfunction—driven by sebum overproduction, follicular hyperkeratinization, bacterial colonization by *Cutibacterium acnes*, and inflammation—it is now increasingly recognized as a **biopsychosocial disorder**. Emerging research highlights the **psychodermatological dimension**, whereby psychological stress contributes to acne onset and exacerbations (6–8,12). The present study explored this intricate relationship in a large sample of 400 acne patients, demonstrating that nearly two-thirds of participants reported stress-related acne flares. Significant correlations between perceived stress, acne severity, and impaired quality of life were observed. These findings not only corroborate existing literature but also contextualize them within the Indian socio-cultural landscape, where academic stress, societal emphasis on appearance, and limited mental health awareness intersect to magnify disease burden.

Stress-Related Exacerbations of Acne

One of the most striking findings was that **60.5% of patients** experienced stress-related worsening of acne. This prevalence aligns with international literature suggesting that stress is among the most common self-reported triggers for acne flares. For instance, **Chiu et al.** reported that medical students undergoing examinations experienced significant worsening of acne, independent of diet or sleep changes, underscoring stress as an independent factor (1). Similarly, **Zari and Alrahmani** demonstrated a strong association between stress severity and acne in Saudi female students, with stress emerging as a key aggravating factor (2).

Our results also highlighted a **gender difference**, with women more likely than men to attribute acne flares to stress. This echoes findings from **Huang et al.**, who observed that female patients reported higher psychosocial burden and depressive symptoms associated with acne (10). The explanation may lie in both biological and sociocultural domains: hormonally, women are more prone to cyclical fluctuations that amplify stress responses, while culturally, appearance-related concerns disproportionately affect women in many societies.

In contrast, **Behnam et al.** found no significant correlation between stress and acne severity in an Iranian cohort (4). Methodological factors may explain such inconsistencies, including smaller sample sizes, reliance on different psychometric tools, or cultural underreporting of stress. Despite these variations, the **preponderance of global evidence**, including our study, indicates that stress plays a critical role in acne exacerbations (3,5).

Mechanistically, this is biologically plausible. Stress activates the **hypothalamic–pituitary–adrenal (HPA) axis**, increasing cortisol release, and stimulates the **sympathetic nervous system**, leading to catecholamine secretion. Both pathways heighten sebaceous gland activity and promote inflammation (6,7). Neuropeptides such as substance P further drive sebaceous lipogenesis and cytokine release, strengthening the causal pathway linking stress to acne exacerbations (6–8). Thus, our clinical findings validate mechanistic models by demonstrating stress-related flares in real-world patients.

Correlation Between Stress and Acne Severity

Beyond self-reported exacerbations, this study demonstrated a **moderate positive correlation** ($r = 0.41, p < 0.001$) between stress scores (PSS) and acne severity (GAGS). This correlation persisted after adjusting for gender and age, highlighting stress as an independent determinant of acne burden.

Comparable findings have been reported internationally. **Yosipovitch et al.** found that increased psychological stress significantly elevated sebum excretion rates, which in turn correlated with acne severity (3). **Gan et al.** similarly reported that academic stress aggravated acne symptoms in Chinese medical students, lending further weight to the cyclical stress–acne connection (5).

A review by **Zouboulis** emphasized that catecholamines and neuropeptides alter sebaceous gland physiology during stress, worsening acne (6). Our results reinforce this model, with stress accounting for nearly 17% of the variance in acne severity. Although acne is multifactorial—affected by hormones, genetics, environment, and lifestyle—psychological stress clearly emerges as a measurable and clinically relevant factor.

Gender-stratified analysis revealed a stronger correlation in women ($r = 0.44$) compared to men ($r = 0.36$). This resonates with findings by **Huang et al.**, who observed that psychosocial stress disproportionately worsened outcomes in female acne patients (10). Sociocultural pressures around appearance, combined with internalized stress responses, may explain why women show greater vulnerability.

Impact on Quality of Life

Perhaps the most important dimension of acne, beyond lesion count, is its effect on **quality of life (QoL)**. In our study, the mean DLQI score was **10.2**, indicating a moderate but clinically significant impact. Notably, one-third of patients reported severe to very severe impairment, with domains such as self-confidence, social interactions, and daily activities most affected.

This aligns with **Mallon et al.**, who found that acne's QoL burden was comparable to chronic conditions like asthma or diabetes, challenging the notion of acne as a “cosmetic” problem (16). Similarly, **Jankovic et al.** showed that

schoolchildren with acne experienced considerable psychosocial challenges, particularly those with moderate-to-severe disease (9). **Gieler et al.** highlighted the academic and interpersonal consequences of acne, further emphasizing its multidimensional burden (17).

Importantly, our regression analysis demonstrated that both **stress (PSS)** and **acne severity (GAGS)** independently predicted QoL impairment, together explaining nearly 40% of variance. This is consistent with **Huang et al.**, who found that QoL mediated the relationship between acne severity and depressive symptoms (10). The vicious cycle becomes evident: stress worsens acne, acne impairs QoL, and impaired QoL fuels more stress, perpetuating disease progression.

The grave consequences of this cycle are illustrated by **Halvorsen et al.**, who reported increased suicidal ideation and social impairment among adolescents with acne (20). Our findings of significant QoL impairment resonate with this, highlighting the urgent need to address acne not just dermatologically, but also psychologically.

Psychodermatological Context and Holistic Care

The findings situate acne within the field of **psychodermatology**, which addresses conditions where psychological factors contribute to dermatological disease (12–14). By demonstrating interlinkages between stress, acne severity, and QoL, our study supports psychodermatology as an essential lens for acne management.

Misery et al. and **Fried et al.** advocate for routine screening of stress and psychological distress in dermatology clinics (12,13). **Aslan and Altunay** propose incorporating interventions such as counseling, relaxation techniques, and cognitive-behavioral therapy (CBT) into acne management (14). Our finding that over half of participants expressed interest in stress-management interventions confirms that patients themselves recognize the need for holistic care.

However, 20.5% of participants in our study remained skeptical of psychodermatological approaches, reflecting cultural tendencies to view acne purely as a skin disease. Overcoming this skepticism requires **patient education**, explaining the biological mechanisms of the brain–skin axis in accessible language. It also necessitates closer collaboration between dermatologists, psychiatrists, and psychologists to normalize integrated care.

Mechanistic Comparisons

The mechanistic models of stress-induced acne provide crucial context for interpreting our clinical results. **Lee et al.** outlined multiple stress-induced pathways—including hormonal fluctuations, immune dysregulation, and microbiome shifts—that converge to aggravate acne (7). **Chen and Lyga** similarly described how chronic stress-induced inflammation accelerates skin disease progression, validating the “brain–skin connection” (8).

By demonstrating significant clinical correlations between stress, acne severity, and QoL, our study bridges the gap between mechanistic theories and patient-reported outcomes. This integration strengthens the argument that psychodermatology is not merely theoretical but a practical, evidence-based approach to acne care.

Public Health and Sociocultural Perspectives

Beyond the clinic, psychodermatology has broader public health implications. Popular science articles in *Time* and *Dermatology Times* have highlighted stress as a driver of acne, disseminating knowledge beyond academia (16,17). This growing awareness parallels our findings and emphasizes the need for **community-level interventions**.

In the Indian context, where academic stress is intense and mental health stigma remains pervasive, psychodermatological care assumes special importance. Public health campaigns should emphasize acne as a legitimate medical and psychosocial disorder, reduce stigma, and encourage early consultation. Schools and colleges could integrate stress-management workshops, addressing both mental well-being and dermatological outcomes.

Strengths of This Study

- **Large sample size (N = 400):** Ensured statistical robustness.
- **Validated tools:** Use of GAGS, PSS, and DLQI provided reliable measurement of clinical, psychological, and QoL dimensions.
- **Multidimensional analysis:** Correlation, regression, and subgroup analyses yielded nuanced insights.
- **Patient-centered data:** Incorporation of perceptions about stress and interest in interventions enhanced real-world relevance.

Limitations

- **Cross-sectional design:** Prevents causal inference; longitudinal studies are needed.
- **Self-reported scales:** Subject to recall and social desirability bias.
- **Biomarkers:** Stress hormones like cortisol were not measured for all participants.
- **Single tertiary-care setting:** Limits generalizability to rural/community populations.
- **Cultural factors:** Stress perceptions may vary across regions and ethnicities.

Future Research Directions

- Conduct **longitudinal studies** to establish temporal causality between stress and acne flares.
- Incorporate **biological markers** (cortisol, CRH, cytokines) with psychometric scales for multidimensional assessment.
- Test **psychodermatological interventions** (CBT, mindfulness, yoga) in randomized controlled trials.
- Apply **omics approaches** to unravel stress-related changes in microbiome and immunology.
- Evaluate **cost-effectiveness** of integrated dermatology-psychiatry clinics for policy implementation.

Clinical Implications

Our findings underscore the urgent need for a **paradigm shift in acne management**. Dermatologists must look beyond lesion counts and integrate psychological assessment into routine practice. Screening with brief tools such as PSS and DLQI can identify high-risk patients in busy OPDs.

Interdisciplinary collaboration with psychiatrists and psychologists should be normalized, especially for patients with high stress, severe acne, or suicidal ideation. Patient education is key: explaining the brain-skin connection demystifies the role of stress and encourages adherence to holistic regimens.

Lifestyle modifications—adequate sleep, healthy diet, physical activity, and stress-reduction practices—should complement pharmacological treatment. Such integrated care not only improves acne outcomes but also enhances mental well-being and overall quality of life.

REFERENCES

1. Chiu A, Chon SY, Kimball AB. The response of skin disease to stress: changes in the severity of acne vulgaris as affected by examination stress. *Arch Dermatol*. 2003;139(7):897-900.
2. Zari S, Alrahmani D. The association between stress and acne among female medical students in Jeddah, Saudi Arabia. *Clin Cosmet Investig Dermatol*. 2017;10:503-6.
3. Yosipovitch G, Tang M, Dawn AG, Chen M, Goh CL, Huak Y, et al. Study of psychological stress, sebum production, and acne vulgaris in adolescents. *Acta Derm Venereol*. 2007;87(2):135-9.
4. Behnam B, Taheri R, Ghorbani R, Allameh P. Psychological impairment in acne: its relationship to the severity of disease. *Iran J Psychiatry*. 2013;8(1):36-40.
5. Gan W, Xie J, Yu X, He S, Lin J, Pan L, et al. The effect of academic examination stress on acne symptoms among medical students. *Int J Environ Res Public Health*. 2022;19(14):8725.
6. Zouboulis CC. Acne and stress: Impact of catecholamines and neuropeptides. *Clin Exp Dermatol*. 2004;29(5):419-25.
7. Lee DY, Yamasaki K, Rudsil J, Zouboulis CC, Park GT. Exploring stress-induced mechanisms in acne pathogenesis: a comprehensive review. *Dermatoendocrinol*. 2024;16(1):e219004.
8. Chen Y, Lyga J. Brain-skin connection: stress, inflammation and skin aging. *Inflamm Allergy Drug Targets*. 2014;13(3):177-90.
9. Jankovic S, Vukicevic J, Djordjevic S, Jankovic J. Quality of life among schoolchildren with acne: results of a cross-sectional study. *Indian J Dermatol Venereol Leprol*. 2012;78(4):454-8.
10. Huang Y, Zhang X, Luo J, Xu Y. Acne severity and quality of life as predictors of depressive symptoms: a moderated mediation model. *Front Psychol*. 2023;14:1153101.
11. Tan JK, Bhate K. A global perspective on the epidemiology of acne. *Br J Dermatol*. 2015;172 Suppl 1:3-12.
12. Misery L, Consoli SG, Consoli SM. Psychodermatology: an update. *Eur J Dermatol*. 2021;31(4):411-8.
13. Fried RG, Gupta MA, Gupta AK. Psychodermatology: an update. *J Am Acad Dermatol*. 2020;83(6):1447-54.
14. Aslan M, Altunay IK. Psychodermatology for the clinician: recognition and management of psychocutaneous disorders. *Dermatol Ther*. 2021;34(1):e14150.
15. Basavaraj KH, Navya MA, Rashmi R. Relevance of psychiatry in dermatology: present concepts. *Indian J Psychiatry*. 2010;52(3):270-5.
16. Mallon E, Newton JN, Klassen A, Stewart-Brown SL, Ryan TJ, Finlay AY. The quality of life in acne: a comparison with general medical conditions using generic questionnaires. *Br J Dermatol*. 1999;140(4):672-6.
17. Gieler U, Gieler T, Kupfer J. Acne and quality of life—impact and management. *J Eur Acad Dermatol Venereol*. 2015;29 Suppl 4:12-4.
18. Dreno B, Poli F. Epidemiology of acne. *Dermatology*. 2003;206(1):7-10.
19. Koo J. The psychosocial impact of acne: patients' perceptions. *J Am Acad Dermatol*. 1995;32(5 Pt 3):S26-30.
20. Halvorsen JA, Stern RS, Dalgard F, Thoresen M, Bjertness E, Lien L. Suicidal ideation, mental health problems, and social impairment are increased in adolescents with acne: a population-based study. *J Invest Dermatol*. 2011;131(2):363-70.