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Introduction: Accurate real-time prediction of hemodynamic parameters is 

essential for guiding cardiovascular interventions and monitoring disease 

progression. Traditional computational fluid dynamics (CFD) approaches, while 

accurate, are computationally prohibitive for clinical use. Physics-informed neural 

networks (PINNs) have emerged as a promising alternative, but their accuracy is 

limited when trained on sparse or noisy data. This study presents a hybrid PINN 

framework that integrates governing equations of hemodynamics with experimental 

and clinical data to enable reliable, real-time prediction and clinical decision 

support. 

Methods: Patient-specific hemodynamic data were obtained from Doppler 

ultrasound, 4D flow MRI, and catheterization studies, supplemented by phantom 

flow experiments using 3D-printed vascular models. The hybrid PINN was trained 

using the Navier–Stokes equations with a composite loss function combining 

physics residuals, data constraints, and boundary condition enforcement. 

Experimental measurements were embedded into the training process to enhance 

accuracy. Performance was compared with standard PINNs, purely data-driven 

networks, and CFD simulations. Evaluation metrics included root mean square error 

(RMSE), relative error in wall shear stress (WSS), R² correlation for flow 

waveforms, and inference time. 

Results: The hybrid PINN achieved a mean velocity RMSE of 0.041 m/s and 

pressure error of 2.3 mmHg, outperforming standard PINNs (0.087 m/s; 6.5 

mmHg). WSS relative error was reduced to 4.8% compared with 12.6% in 

conventional PINNs and 19.3% in data-driven models. Inference times averaged 

0.35 seconds per dataset, compared with >50 minutes for CFD. Integration into a 

prototype clinical decision support system enabled real-time visualization of flow 

fields and automated alerts for pathological thresholds. 

Conclusion: Hybrid PINNs combining physics and experimental data provide 

accurate, computationally efficient, and clinically relevant predictions of 

hemodynamic states. This approach bridges the gap between CFD precision and 

real-time applicability, offering a scalable pathway for precision cardiovascular 

decision support. 
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INTRODUCTION 

The precise forecasting of haemodynamic reactions in real time is essential for the management of patients with 

cardiovascular illnesses, which continue to be the primary cause of morbidity and mortality globally. Haemodynamic 

parameters, including blood pressure, flow velocity, and wall shear stress, are essential for comprehending disease 

development in situations such as aneurysms, vascular stenosis, and heart failure. Conventional computational fluid 

dynamics (CFD) methods, although dependable, are resource-intensive and inappropriate for real-time clinical use (1). 

https://ijmpr.in/
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This has prompted the investigation of physics-informed machine learning models, namely Physics-Informed Neural 

Networks (PINNs), which include the governing equations of fluid mechanics directly into the neural network training 

process.  

 

PINNs facilitate the integration of data and physical principles, permitting models to extend their generalisation beyond 

the confines of exclusively data-driven approaches. Nevertheless, traditional PINNs frequently encounter difficulties in 

precision and resilience when dealing with scarce or noisy clinical data. This constraint is particularly concerning in 

cardiovascular medicine, where patient-specific data are frequently few and diverse (3). Hybrid frameworks integrating 

Physics-Informed Neural Networks (PINNs) with experimental or clinical data are emerging as a promising avenue. By 

limiting the solution space through physical rules and empirical data, these hybrid PINNs can yield more dependable 

predictions of blood flow and pressure fields in anatomically accurate vascular geometries (4,5). 

The incorporation of experimental data into hybrid PINNs improves their ability for customisation and immediate 

application. For example, integrating patient-specific data acquired from Doppler ultrasound or catheterisation 

investigations with PINN architectures can provide adaptive learning customised to individual cardiovascular conditions 

(6). These models not only attain enhanced accuracy relative to traditional black-box neural networks but also preserve 

interpretability based on physiological principles. Furthermore, the diminished computing burden compared to high-

fidelity CFD simulations renders them appropriate for implementation in real-time decision support systems (7).  

 

The clinical ramifications of such models are significant. Real-time haemodynamic forecasting can enhance surgical 

decision-making, refine stent placement, or deliver early warning indicators in critical care surveillance. Moreover, hybrid 

PINNs can enable virtual clinical trials, allowing the simulation of therapeutic interventions across many patient 

populations without the risks or expenses linked to traditional studies (8).  

The creation and validation of hybrid PINNs are crucial for converting computational modelling into practical clinical 

intelligence. By integrating data-driven learning with mechanistic modelling, they possess the potential to transform 

cardiovascular treatment and facilitate precision medicine strategies in haemodynamic management. 

 

METHODOLOGY 

Study Design 

This work employed a hybrid computational–experimental design that integrated physics-informed neural networks 

(PINNs) with patient-specific experimental data to enable real-time hemodynamic prediction. The study was structured to 

incorporate fundamental laws of cardiovascular fluid mechanics into deep learning architectures, while simultaneously 

constraining these models with clinical and in vitro experimental data. This dual approach was chosen to overcome the 

limitations of purely physics-based computational fluid dynamics (CFD), which is computationally intensive, and of data-

driven neural networks, which often lack generalizability when trained on sparse or noisy clinical datasets. 

 

Data Acquisition 

Patient-specific hemodynamic data were obtained from individuals undergoing standard diagnostic procedures, including 

Doppler ultrasound, cardiac catheterization, and four-dimensional flow magnetic resonance imaging (4D flow MRI). These 

modalities provided inlet velocity profiles, flow waveforms, blood pressure measurements, and reconstructed vascular 

geometries for use in boundary condition specification and model training. To supplement the clinical data, in vitro 

validation was performed using anatomically realistic phantom models. Arterial bifurcations and stenotic vessel segments 

were fabricated using three-dimensional printing and cast in transparent silicone elastomers to replicate vascular 

compliance. A pulsatile flow loop driven by a physiological pump was constructed, and velocity fields were captured using 

particle image velocimetry (PIV) along with pressure sensors to establish ground-truth experimental data. These data served 

as critical references for evaluating model accuracy. 

 

Governing Equations 

The computational framework of the hybrid PINN was built around the Navier–Stokes equations governing incompressible 

Newtonian fluid flow. Conservation of mass was enforced through the continuity equation, while conservation of 

momentum was maintained through the time-dependent Navier–Stokes formulation. Blood was assumed to exhibit 

Newtonian behavior at the scale of large arteries, and density and viscosity values were personalized using patient 

laboratory data. Boundary conditions were obtained from Doppler and catheterization studies for inlet and outlet 

constraints, while no-slip conditions were applied at vessel walls. 

 

Hybrid PINN Architecture 

The neural network architecture comprised fully linked layers utilising hyperbolic tangent activation functions, 

transforming spatio-temporal inputs into anticipated velocity and pressure outputs. The training procedure reduced a 

composite loss function consisting of three components: the residuals of the Navier–Stokes equations (physics loss), the 

mean squared error between predicted and observed flow parameters (data loss), and the imposition of boundary 

restrictions. Hybridisation was accomplished by incorporating sparse experimental and clinical observations directly into 

the loss function, so ensuring that the solution space remains physiologically consistent even in areas with limited data. 

Initially, optimisation was performed using the Adam optimiser, subsequently followed by L-BFGS to attain convergence. 
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Training and Validation 

The available dataset was partitioned into training, validation, and test sets in a 70:15:15 ratio. Cross-validation was 

performed to assess generalizability and reduce the risk of overfitting. Training was conducted on NVIDIA A100 graphical 

processing units using TensorFlow and PyTorch backends, with each model trained for 5000–10000 epochs depending on 

convergence behavior. The training process typically required 6–8 hours per dataset, which was substantially lower than 

the runtime of equivalent CFD simulations. 

 

Evaluation Metrics 

Model performance was assessed using multiple complementary metrics. The root mean square error (RMSE) was 

calculated for velocity and pressure predictions relative to ground-truth clinical and experimental data. Relative errors in 

wall shear stress estimation were computed to evaluate clinical applicability. The coefficient of determination (R²) was 

reported to assess correlation with measured flow waveforms. Computational time was benchmarked against conventional 

CFD to validate the real-time applicability of the proposed approach. 

 

Clinical Decision Support Integration 

The completed trained model was integrated into a prototype clinical decision support system (CDSS). The interface 

enables clinicians to input patient-specific information, such as inlet velocity profiles and blood pressure measurements, 

and provide immediate forecasts of velocity distributions, pressure fields, and wall shear stress maps. Visualisation modules 

identified crucial areas of flow disruption, stenosis, or increased shear stress that may indicate pathological risk. 

Additionally, the CDSS was programmed to issue automated alarms when anticipated haemodynamic thresholds, 

suggestive of high-risk clinical conditions, were surpassed. 

 

RESULTS 

Model Training and Convergence 

The hybrid PINN framework successfully converged across all patient-specific and phantom datasets. Figure 1 (not shown 

here) demonstrates the decline in composite loss during training, where a rapid reduction was observed in the first 2000 

epochs followed by gradual stabilization. Incorporating experimental data into the loss function accelerated convergence 

and reduced oscillations compared with baseline PINNs trained solely on governing equations. (Figure 1)  

 

Accuracy of Hemodynamic Predictions 

Comparison with ground-truth clinical and phantom experimental measurements revealed that the hybrid PINN 

consistently outperformed both conventional PINNs and reduced-order data-driven neural networks. Table 1 summarizes 

the predictive accuracy across evaluation metrics. The mean RMSE for velocity predictions was significantly lower in the 

hybrid PINN model (0.041 m/s) compared with the standard PINN (0.087 m/s). Similarly, pressure field errors decreased 

from 6.5 mmHg in the standard PINN to 2.3 mmHg with hybridization. 

 

Wall Shear Stress Estimation 

Wall shear stress (WSS) predictions, a clinically relevant parameter in assessing atherosclerotic risk, demonstrated notable 

improvements with the hybrid model. Relative error in WSS estimation averaged 4.8% for hybrid PINNs compared with 

12.6% for conventional PINNs and 19.3% for purely data-driven networks. These results highlight the benefit of 

incorporating both physics constraints and experimental data in generating physiologically reliable outputs. 

 

Computational Efficiency 

Benchmark testing confirmed the feasibility of real-time applications. Average inference time for hybrid PINNs was 0.35 

seconds per patient dataset, compared with 52 minutes for conventional CFD simulations using the same vascular 

geometry. This efficiency enables near-instantaneous clinical decision support during diagnostic or interventional 

procedures. (Figure 2 and Figure 3)  

 

Table 1. Performance Comparison of Hemodynamic Prediction Models 

Metric Data-Driven NN Standard PINN Hybrid PINN (Proposed) 

RMSE – Velocity (m/s) 0.129 0.087 0.041 

RMSE – Pressure (mmHg) 12.4 6.5 2.3 

Relative Error – Wall Shear 

Stress (%) 
19.3 12.6 4.8 

R² – Flow Waveform 

Correlation 
0.81 0.89 0.96 

Average Inference Time 

(s/dataset) 
0.29 0.42 0.35 

CFD Runtime (reference, 

minutes) 
– – 52 
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Clinical Decision Support Integration 

Deployment of the trained model into the prototype CDSS demonstrated practical applicability. In real-time testing, 

clinicians were able to input boundary conditions and visualize hemodynamic fields instantly. The system successfully 

identified regions of high wall shear stress in stenotic phantoms and predicted pressure drops consistent with catheter-based 

measurements. Automated alert thresholds (e.g., WSS > 20 Pa or pressure gradients > 15 mmHg) were triggered 

appropriately, validating the clinical relevance of the framework. (Table 1)  

 

 
Figure 1: Training and convergence curves (Standard PINN vs Hybrid PINN). 

 

 

 
Figure 2: Velocity field comparison (CFD reference vs models). 

 

 
Figure 3: Computational efficiency benchmark (log scale, showing seconds vs CFD minutes). 
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DISCUSSION 

This study illustrates the viability of hybrid physics-informed neural networks (PINNs) enhanced with experimental data 

for real-time haemodynamic forecasting and clinical decision assistance. The suggested approach, by combining 

mechanical rules of cardiovascular fluid dynamics with limited clinical and phantom measurements, attained enhanced 

accuracy in estimating velocity, pressure, and wall shear stress relative to traditional PINNs and solely data-driven neural 

networks. These findings underscore the importance of integrating physiological knowledge into educational frameworks 

while utilising experimental limitations to improve generalisability.  

  

 

 
Figure 4: Hybrid PINN Architecture Schematic 

 

Our findings demonstrate that hybrid PINNs significantly diminish prediction errors, achieving a velocity RMSE virtually 

halved compared to normal PINNs, and reducing pressure error to below 3 mmHg. These enhancements are clinically 

significant, as even minor mistakes in pressure gradient calculation may affect decisions related to procedures such as stent 

installation or valve repair (8). Conventional CFD, despite its excellent accuracy, is computationally impractical for real-

time applications, necessitating hours of processing for each patient case (1). In contrast, hybrid PINNs offer rapid inference 

while maintaining adherence to physical principles, rendering them particularly appropriate for clinical integration.  

The efficacy of hybrid PINNs corresponds with previous findings in computational haemodynamics that highlight the 

importance of integrating physics priors for effective generalisation. Raissi et al. presented Physics-Informed Neural 

Networks (PINNs) as a comprehensive framework for integrating partial differential equation (PDE) constraints into deep 

learning. Subsequent research in cardiovascular modelling, however, identified difficulties when clinical data were 

insufficient or unreliable (3,4). Our methodology is predicated on these principles, illustrating that experimental 

hybridisation not only expedites convergence but also enhances training stability, mitigating prevalent problems of 

oscillatory loss curves in conventional PINNs. This aligns with findings by Sel et al., who indicated that hybrid PINNs 

trained on sparse catheterisation data produced enhanced pressure reconstructions in coronary arteries (6).  

The prediction of wall shear stress, a crucial factor in the formation and propagation of atherosclerotic plaques, was much 

improved in our model, with relative errors decreased to under 5%. Precise mapping of WSS is crucial for risk stratification, 

since regions of high shear are associated with plaque rupture, whereas low shear zones promote lipid accumulation (10). 

Our findings demonstrate that hybrid PINNs may consistently duplicate these haemodynamic signals, presenting 

opportunities for non-invasive clinical monitoring.  

 

From a translational standpoint, incorporation into a clinical decision support system (CDSS) exhibits concrete advantages. 

Clinicians could enter patient-specific boundary conditions and immediately visualise flow disruptions, pressure dips, and 

locations of elevated wall shear stress (WSS). The CDSS prototype activated automatic alarms upon surpassing 

pathological thresholds, indicating possible use in surgical decision-making or critical care monitoring. This capability 

may enhance current imaging modalities like Doppler ultrasound and 4D flow MRI by offering real-time computational 

assistance.  

 

However, some limitations merit attention. The research utilised a blend of patient information and phantom models, which 

may not fully represent the variability of vascular disease manifestations. Additionally, blood rheology was estimated to 

be Newtonian, but non-Newtonian effects may be significant in smaller arteries and pathological conditions (11). Future 

research should investigate the integration of viscoelastic models, bigger multicentric datasets, and prospective validation 

within clinical procedures. Furthermore, although hybridisation expedited training, inference speed may still be 

compromised by heightened network complexity; optimisation for edge deployment will be essential for wider adoption.  

This study presents compelling evidence that hybrid PINNs utilising experimental data can reconcile high-fidelity CFD 

simulations with real-time clinical needs. Integrating physical restrictions, data assimilation, and quick inference, such 

models present a viable avenue for precision haemodynamics and individualised cardiovascular decision support. 

 

CONCLUSION 

This study illustrates that hybrid physics-informed neural networks (PINNs), when integrated with experimental and 

clinical data, offer a robust framework for real-time haemodynamic prediction and clinical decision support. By integrating 
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fundamental fluid mechanics into the learning process and restricting solutions with patient-specific data, the hybrid PINNs 

attained markedly superior accuracy in estimating velocity, pressure, and wall shear stress compared to traditional PINNs 

or data-driven models. The approach maintained the physiological interpretability of conventional computational fluid 

dynamics (CFD) while decreasing computational time from hours to mere fractions of a second, facilitating near-

instantaneous inference. The incorporation into a prototype clinical decision support system underscored the method's 

translational potential, facilitating dynamic visualisation of haemodynamic parameters and automatic notifications for 

problematic thresholds. 
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